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Abstract—Feature extraction refers to the groups of techniques
that, when applied to large dimensional and redundant data
result in significant dimensionality reduction while preserving or
even enhancing the information content. Among various
techniques investigated for feature extraction, of new interest is
Nonnegative Matrix Factorization (NMF). In NMF, it is assumed
that the data is formed as a linear nonnegative combination of
positive sources and the NMF solution recovers the original
sources and the mixing matrix.

In this paper, we first look at ways NMF can be applied for
feature extraction in hyperspectral imagery a data known for
large sizes and redundancy. While some of the associations are
natural to linear mixing model (LMM - that assumes that
hyperspectral images are formed as a linear mixture of
endmember information), we also show NMF to be a slow
method. To counter this, we investigate alternative solutions such
as projected NMF approaches and provide an insight to how
parallel implementations would contribute to speedup.
Experimental results on various data show projected NMF
outperforming regular NMF with parallel implementations
providing a promising speedup advantage.

Index Terms—remote sensing, hyperspectral data, linear
unmixing, linear algorithms, Nonnegative Matrix Factorization.

1. INTRODUCTION

N remote sensing, few areas have seen such an accelerated

development as it is the case with hyperspectral and
multispectral imagery [1]. While spectral imaging has started
as a basic evolution of the photogrammetry, the ability to
increase the sensed information through the finer and finer
separation of the light spectrum in different recorded images
has resulted in tremendous advances in processing and
extension of applicability that allow us to consider spectral
imaging as a distinct field in its own.

Given any material, and using readily available lab
equipment, one can measure the intensity of the light reflected
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by the material [2]. The resulting data are usually presented as
a continuous graph of reflectance intensity versus light
wavelength (often called spectra) [3]. Figure 1 displays the
spectra for grass (solid line) and dry grass (dashed line) as
provided by the United States Geological Survey Spectral
Library, one of the largest sources of spectral information [3].
Note how the reflectance values differ significantly for the
visible to infrared interval (400 nm to 1600 nm). This is due to
the differences in both color (for the visible area) and
chlorophyll content (for the infrared area).

When exact measurements are possible, the spectral
characteristics of a material allow for accurate identification.
Unfortunately, collecting spectral profiles similar to the ones
provided by USGS is done using spectral radiometers able
only to record information for only one distinct point.
Compared to that, hyperspectral imaging sensors have the
advantage of collecting data over larger areas by producing
image based representation of the spectral characteristics.
Figure 2 displays the parts of the data produced by such an
imaging sensor (SOC 700). In this case, the spectral
information corresponding to the wavelength intervals is
colleted as image bands covering a relatively large area. Figure
2a shows the image of a ceramic plant pot placed on a large
rock formation and having as background a brick wall. The
plants arranged in the pot are both natural and artificial.
Extracting a vector of pixels from the formed image cube is
similar to producing the spectra for the material corresponding
to the pixel location. Figure 2¢ shows spectra extracted in this
way for fake and real (solid and dashed lines respectively) as
well as for the ceramic pot (diamond markers) and the rock
formation (dotted line). Figure 2d shows a vertical slice
through the data cube where the spectra can be seen as rows.

Hyperspectral imagers are characterized by spectral and
spatial resolution. Spectral resolution refers to the width of the
spectral wavelength intervals associated to each of the bands
and the spatial resolution refers to the surface (in square
inches, fect, or miles) covered by each pixels. Both
characteristics, together with the uncertainties of the
atmospheric conditions and light illumination indicate that the
spectra collected may not match the one recorded through
regular spectrometers. Pixel values are not ‘pure’ spectrally, in
the sense that the atmosphere, and the light do not offer perfect
observation conditions and the spectral resolution may be



considerably coarser than the on¢ obtained in a lab
environment. Pixel values are neither ‘pure’ spatially since
they most probably span over arcas cover by a group of
materials.

To extract useful information from hyperspectral imagery,
one must use methods that would reduce the spatial and
spectral ambiguity and increase the relevance of the data. One
traditional approach for processing hyperspectral data is
feature extraction. Feature extraction is defined as the process
of reducing the data to a lower dimension without significant
information loss [5]. In our case, this is done by cither
selecting certain bands of by using a transform that produces
the features as combinations of bands.

0.6+

04 -

Value

1.5
‘Wavelength
Fig. 1. Spectra for two different stages of vegetation growth mieasured over
the 400-2500 nm spectral range: Healthy grass (solid) and dry grass (dashed)
are plotted. Note the significant differences for the left side of the graph
corresponding to-visible :and near infrared ranges. Wavelengths provided in
micrometers (1m = 1000nm).

Fig. 2. Spectral bands provided by a hyperspectral imager corresponding to
portions of the green, blue and red lights. (a) The images colleted by the
sensor are grouped ‘in-(b) hypérspectral data cubes. (¢) The spectral can now
be collected as a vector through the cube. (d) .A slice through the cube
showing the various.spectra, Data collected using a SOC 700 imaging system
and reécorded over the 400 nm-—900 nin wavelength interval in 120 bands.

While it is possible to envision supervised feature extraction
where the bands are formed in order to increase separability of
known ‘materials, it is oftén the case that no prior information
is available on the scene surveyed [6]. In this case (usually
called unsupervised), the algorithms focus on the increase of
the separation between classes within each feature:. The
separation is measuted using class information such as
distanice between means, distance between probabilities, etc
[3]. Previous efforts have focused on Principal Component
Analysis (PCA) [7], Orthogonal Subspace Projection (OSP)
[8], Minimum Nois¢ Fraction (MNF) [9], Independent
Component Analysis (ICA) [10], to name a few. Many of
them however require significant constraints on the nature of
the extracted features (such as decorrelation or independence),
and may result in decreased relevance of the results.

In a series of recently published papers we have investigated
how Nonnggative Matrix Factorization (NMF) can be
employed for feature extraction [11, 12]. The studies showed
NMF c¢an have a natural intefpretation in hyperspectral
imagery and can be seen to closely match the lingar ‘mixing
model used in spectra unmixing. However, they have also
indicated that NMF is slow to-converge. To counter this, in the
current paper we survey a new NMF algorithm based on
projected gradients. To increase the speedup we also look at a
parallel implementation scenario. The paper is organized as
follows. In the second section we provide a brief overview of
NMF and its modeling for hyperspectral image processing.
Section III describes the new projected: gradient algorithim and
discusses possible parallel implementations. Section IV
provides a survey of our experimental results. The paper ends
with Conclusions (section V) and References.

II. NONNEGATIVE MATRIX FACTORIZATION (NMF)

Given the observed data x; the goal of NMF is to find s and
a lincar mixing transform W both positively defined such that
[13]:
x=Ws (1)

This approach can be understood as factorizing a data
matrix subject to positive constraints. Solutions to NMF are
based on constraining positivity and the gradient optimization
(minimizing the distance between x and iterations of Ws). The
optimization. is done by repeatedly updating W and s using
[13]

W=W-— af(W,S) (2)
oW
o Jf (W,s) @)
os
where:
F(W,8)=|x-Ws| )

and H” . designates the Frobenius (or Euclidean) norm. At

cach step we also ensure that W and s are positive and § is
normalized.



An algorithm including the positivity restrictions is
presented in [13] and was used to separate a limited number of
hyperspectral spectra in [14]. In this case, the equations 2 and
3 are substituted by:
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respectively.

In [11] we present a similar approach. Compared with NMF
algorithms described in the literature our change was to
enforce the restrictions on s such that they will satisfy the
linear mixing model (LMM). In LMM, each observed spectra
x can be expressed as [11]:

X=>as,+w=Sa+w @)
i=1

where S is an nxm matrix of spectra (Sy, .., Sm) Of the individual
composing materials (also called endmembers), a is an m-
dimensional vector describing the fractional abundances of the
endmembers in the mixture (abundance vector) and w is the
additive noise vector. The elements of the abundance vector
are assumed to be positive and with unit sum:

a,20,i=1,...m (8)

S =1 ©)
i=1

Identifying various materials in the image means finding the
endmembers and their abundances. The endmember linear
unmixing problem plays an important role in hyperspectral
image analysis [11]. Feature extraction can be seen as
performing unmixing. The abundance determination is done at
the same time with endmember selection. In this case, the
endmembers and abundances are assumed deterministic and
unknown and a maximum likelihood estimation approach is
employed to determine them.

Most of the feature extraction techniques cannot be directly
applied for endmember extraction since they do not verify the
equations 7 and 8. In addition, techniques such as PCA and
ICA further restrict the endmembers to be orthogonal or
independent. In this view, NMF is less restrictive and does not
require any significant modification for applying it for
unmixing.

A quick analysis of the update steps in (4) and (5) reveals
that while they ensure that the matrices remain positively
defined, they also require significant computation times. If we
assume that W is n x m, X is # X p, and s is m X p, computing
the equation 4 requires O(nmp) operations, while the equation
5 requires O(nmp+p°m). Assuming large values for p since it
relates to the number of pixels in the image and the fact that
the iterative algorithms will require several iterations, NMF
seems to be a computationally intensive method.

One possible problem is that the update step does not
involve any fine tuning. When the new values for x and W are
computed, no control is provided to ensure that the update
leads to the optimum values or we are in fact ‘overshooting’.

To counter this, we investigated a new direction, recently
introduced in the literature and based directly on the gradient
steps.

III. ADAPTIVE PROJECTED NONNEGATIVE MATRIX
FACTORIZATION (APNMF)

Given the original update steps (2) and (3), there is no
warrantee that the resulting values will not include negative
components. To counter this, we modify these steps to enforce

positivity:
W= P(W——af (W’S)j (10)
5)%'
= p[S_M] an
Js
where:
>
P ={x x=20 (12)
0 x<0

In other words, the update will occur only when the
positivity is ensured. In this case, it is possible to build an
NMF algorithm that tries to compute the best update step for
each iteration.

The algorithm is described in Figure 3 and constitutes a
simplified version of the one presented in [15]. There are
several significant differences compared to the original NMF
algorithms. First, we note that in the steps 7 and 10, W and s
respectively are constants. This means that we can compute the
derivative on s (and on W respectively) without worrying
about the other component of the NMF problem. Second, the
direct use of the gradient formula allows for the introduction
of an adaptive factor o that that will lead to an update on s,
and W with higher precision than the regular gradient
approach. Because of this, the algorithm is also often
described as alternative projection optimization [15]. Previous
studies indicate that using alternative projection steps still
allows for a determination of the optimum value [16,17].
Finally, the algorithm now has a clear stop condition (see step
12). We will stop when the change between two consecutive
iterations has not produced a significant improvement
(expressed as a fraction € from the previous value of the
function f described in equation 3). In our experiments, € had
the value 0.001 — i.e. one thousandth.

Of particular interest is the choice for « in the steps 6 and 9.
Since in both cases we can come up with similar strategies, we
will focus on only step 6. Given a generic current solution W
and s, the goal is to find o such that:

azargmin(f(W,P[sk—E{MBJ (13)

os,

In other words, we must find the update parameter that
optimally minimizes the distance (based on s) to the solution.
[15] and [16] discuss an iterative process that can produce an
approximation of such o In this case, we start with a fixed
value (say 0.001) and we increase it or decrease it until the
optimal value is reached. An efficient way of the update is
given in Figure 4. In short, if the update provided by the
current o is too small (the test in step 4) we will increase alpha



by ten (i.e. divide by p=0.1). We will continue increasing as
long as the update is still small (step 5) and will stop at the
largest value that ensured that the update is not overshooting.
In the case that the update is already overshooting in step 4, we
will start a decrease process for o by repeatedly dividing it by
10 (i.e. multiply with B=0.1) and stop once we find a value
that does not overshoot the optimal solution. In all our
experiments we followed the suggestion that ¢ = 0.01.

We note that we have extensively used the term of
overshooting. In our understanding, overshooting means that
the update value for s will not provide a sufficient decrease of
the optimization function. The condition:

F(W,s)— F(W,s) < am (14)
S

(s—5)

. Randomly initialize W and s to positive values
. Scale the columns of s to sum up to one
. Wo=W and s¢=s
. Compute dy=f{W,S¢)
. Repeat for k=0,1,...:
6. Find optimum o for 7.

P =pf a2 )

sk
8. Scale the columns of s to sum up to one
9. Find optimum o for 10.
10. I (Wys8,.0)
W, :P[Wk—a—f a‘ka = ]
11. Compute di, /= Wici1,5k41)
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12. while (dk- dk+1)<€dk

Fig 3. Adaptive Projected Nonnegative Matrix Factorization algorithm
(APNMF)

1. Start with current W and s
2. Start with 0=0.001, B = 0.1, and 6=0.01
3. Compute E:P( _a?)f(W,S)j

S

S

I w5 s <o LG
S

do steps 5 and 6
Else
do step 7

5. while f(w’g)_f(w’s)gam(g—s)
s
5.1. o=at/ B
523 fs- a0
Js
6. 0=c *
7. while f(W,g)—f(W,s) < o—@(g—s)
S

6.1. o=o. *
62 ;:P(S_aaf(::,’s)]

Fig 4. Computation of the optimum update value for APMNF.

has been shown to ensure that a sufficient decrease will occur
and that an optimum solution will be reached [15].

To obtain the update step for W we note that we can apply
the same algorithm as Figure 4 since:

x=Ws o x’ =(Ws) ox’ =s'W' 15

Finally, we note that the condition 14 is not well formed
from the point of view of vector arithmetic. An alternative
condition is provided in [Ref]:

(1_a)<—af(W’s),g—s>+l<§—s,wTw(§_s)> <0 (16)
Js 2
of (W,s)
os

The developed algorithm has a complexity higher than the
regular NMF one. At each iteration, to compute the formula in
equation 17 we would need O(m’n’p). Then, to compute the
new s we need O(mp) followed by the check for condition 16.
This is done in O(m°n’p). Overall, to compute the new updated
s the algorithm in Figure 4 needs O(km’n’p) where k is the
number of rounds the steps 5 or 7 are needed to be run.

To speedup the processing, we suggest a parallelization of
the algorithm in Figure 4. Figure 5 shows such parallelization
based on a generic number of ¢ threads. The algorithm starts by
deciding which direction the search for o should be taken.
From this, we will compute in parallel several new possible
update steps and chose the best one.

=W'Ws—W'x a7

1. Start with current W and s
2. Start with 0=0.001, B = 0.1, and 6=0.01, and ¢ parallel
processes.
3. Compute 5 _ P(S_O{E)f(;V,S)j
S

I W s W o LTIy
S
do step 5
Else
do step 6

5. Compute in parallel for o,=a/ B, ..,c.=0/ B'
By
ds

5.1. Find largest k s.t. F(W,s)— f(W,s) < af(;’V,S) 5, —5)
S
5.2. If k is equal 7, repeat 5 with o=
If & not found, use the original o
Otherwise o=0y and stop

6. Compute in parallel for oy=oc* B, ..,oq=0u* B'
o 200
ds

6.1. Find smallest & s.t. W,s)

a
FOW,s)— F(W,s5) < af(a—s’<sk —s)

6.2. If k not found, repeat 6 with o=0
Otherwise o=0y and stop

Fig 5. Parallel computation of the optimum update value for APMNF.



The PAPNME (Parallel Adaptive Projected Nonnegative
Matrix Factorization) algorithm that results has the advantage
of providing a faster iterative step, closer to O((k/tym’n’p). It is
interesting to note that if o is very close to the original starting
value, the parallel version may not provide significantly better
results.

IV. EXPERIMENTAL RESULTS

The sequential and parallel APNMF algorithms were
implemented in Matlab 7.3 and run a-on a Dell Latitude system
with Intel Pentium 4 at 2.4GHz processor and 512MB of
RAM. In order to avoid repletion, we refer the reader to our
previous work in. [11] for an explanation on the relvance of
NME for feature extraction. In this paper, we have focused the
practical experiments on the comparative analysis of accuracy
between regular NMF and APNMF as well as performed a
preliminary investigation on the speedup provided by the
PAPNMEF.

A. HYDICE Data

The hyperspectral image set (see Figure 6) was provided
from the Hyperspectral Digital Iimagery Collection Expetiment
(HYDICE) by the Spectral Information Technology
Application Center (SITAC): It corresponds to a foliage scene
taken from with a spatial resolution of 1.5m at wavelengths
between 400nm and 2.5 micron part of the Forrest Radiance
set. Various panels are present in the scene organized on eight
rows dand of different sizés (3m X 3m, 2m X 2m and Im X Im
from left to right respectively).

A subset of 85 bands uniformly extracted from the data was
used as input to the NMF algorithm. Starting with 10 different
initializations for W and s we have run NMF, APNMF, and
PAPNMF (varying the number of parallel processes from 2 to
8). Figure 8 shows the progression of accuracy (based of the
function f described in equation 4) vs the number of rounds.
We¢ note that while both NMF and APNMF have stopped
within 20 rounds for € = 0.01, neither have stopped after 200
rounds for e = 0.01. For clarity, we have plotted only the first
25 rounds, with the mention that, after 200 rounds APNMF
has reached a value approximately half than the one reaced by
NMF at the same number of rounds. We conjecture that
APNMF, through its fine tuning algorithm is able to match
closer the optimal solution than the original multiplicative
NMF method.

We did not expect the PAPNMF to provide any changes in
the accuracy progress when compared with APNMF. Indeed, a
review of the algorithm presented in Figure 5 convinces the
reader that at each step PAPNMF will produce the same
update coefficient as APNMF. A cursory look at the resulted
experimental data verified out theoretical conclusion.

When looking at the average number of iterations needed for
the APNMF to provide the next o compared to PAPNMF we
notice a remarkable reduction (see Figure 9). While the
sequential solution requires on average three iterations, the
number decreases to- close to one once four or more parallel
processes are employed. Since only three values are checked

on average to yield the new a, it is ¢lear that increasing the
parallelization beyond four will not help.

B. SOC Data

The second experimerit uses data produced using a SOC 700
hyperspectral sensor cutrently available in our lab. The camera
is able to produce 640x640 pixel images on 120 bands equally
spaced within the-400nm and 900nm (i.e. visible to near-
infrared range). Forty bands uniformly extracted from the
image cube were used for the experiment.
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Fig 6. Hydice data scene with the panels highlighted.
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Fig 8. Aceuracy graph for MNF and APNMF applied tothe Hydice data for
the first 25 iterations.
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Fig 9. Average number of iterations for each round versus the number of
parallél processes used in the case of the Hydice data.



Figure 10 shows the selected image. The set-up is formed of
an artificial plant arranged in a light brown ceramic pot,
Several real leaves (shown in enhanced green in the picture)
were placed between the artificial leaves (left side, top and
lower right side of the green area). To benefit from full
spectrum illumination, the arrangement was placed outside on
a large rock formation. The background is formed of a brick
wall.

We have followed experimental scheme similar to the one
for Hydice (10 runs, ¢ach including NMF, APNMF and
PAPNMEF with the number of parallel processes ranging from
2 to 8). Figure 11 shows the average progression of accuracy
(based of the function f'described in equation 4) vs the number
of rounds. For clarity, we have plotted only the first 25 rounds,
with the mention that, again, after 200 rounds APNMF has
reached a value significantly lower than the one reached by
NMF at the same number of rounds.

When looking at the average number of iterations needed for
the APNMF to- provide the next o. compared to PAPNME we
noticc a remarkable reduction (see Figure 12). While the
sequential solution requires on average three iterations, the
number decreases to close to one once four or more parallel
processes are e¢mployed. Since only three values are -checked
on average to yield the new g, it is clear again that increasing
the parallelization beyond four will not help. While not
plotted, we also note that our empirical observations lead us to
believe that the mnumber of iterations for s has been
significantly lower (usually 1 increase from 0.0001) compared
to the number of iteraions for W (usually 4-6 decreases from
0.0001). While we noted consistent behavior ‘among the two
data sets, the only viable explanation would be that s is a
significantly larger data compared to W and this; in turn will
minimize any differences when computing the formula 16.

V. CONCLUSION

We have investigated a new approach to solving the
Nonnegative Matrix Factorization problem when employed for
feature extraction in hyperspectral [imagery. While previiusl
work has suggested NMF as a viable tool in providing
improved data representation (a key component of feature
extraction), questions remain related to the convetgence of the
method. T our new investigations we have analyzed a newly
proposed algorithm based on adaptive projective gradient and
modified it to fit the hyperspectral linear mixing model. The
algorithm is further improved by an elegant parallelization of
the most time consuming component; the search for the
optimum update ‘coefficient.

Our experiment results support the claim that APNMF
outperforms NMF by resulting into a lower valued accuracy.
Furthermore, when we employ parallelization, we discover a
reduction of up to three fold in the computation time. Given
the current programming envitonment that was based on a
sequential implementation and a single processor machine, our
results are mostly of theoretical interest. Current work in
developing an efficient parallel processing module for NMF
are underway and will be reported in future communications.

iterations

Fig 11. Accuracy graph for MNF and APNMF for the SOC data for the first
25 itérations.
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Fig 12. Average number of iterations for each round versus the number of
parallel processes used in the cage of the SOC data.
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