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by the material [2]. The resulting data are usually presented as
Abstract-Feature extraction refers to the groups of techniques a continuous graph of reflectance intensity versus light

that, when applied to large dimensional and redundant data wavelength (often called spectra) [3]. Figure 1 displays the
result in significant dimensionality reduction while preserving or spectra for grass (solid line) and dry grass (dashed line) as
even enhancing the information content. Among variousevenenhncin th infrmaion ontnt. mon varous provided by the United States Geological Survey Spectraltechniques investigated for feature extraction, of new interest is provideby the Unit states Geologcal Survey Seta
Nonnegative Matrix Factorization (NMF). In NMF, it is assumed Library, one of the largest sources of spectral information [3].
that the data is formed as a linear nonnegative combination of Note how the reflectance values differ significantly for the
positive sources and the NMF solution recovers the original visible to infrared interval (400 nm to 1600 nm). This is due to
sources and the mixing matrix. the differences in both color (for the visible area) and

In this paper, we first look at ways NMF can be applied for chlorophyll content (for the infrared area).
feature extraction in hyperspectral imagery a data known for When exact measurements are possible, the spectral
large sizes and redundancy. While some of the associations are
natural to linear mixing model (LMM - that assumes that characteristics of a material allow for accurate identification.
hyperspectral images are formed as a linear mixture of Unfortunately, collecting spectral profiles similar to the ones
endmember information), we also show NMF to be a slow provided by USGS is done using spectral radiometers able
method. To counter this, we investigate alternative solutions such only to record information for only one distinct point.
as projected NMF approaches and provide an insight to how Compared to that, hyperspectral imaging sensors have the
parallel implementations would contribute to speedup. advantage of collecting data over larger areas by producingExperimental results on various data show projected NMF
outperforming regular NMF with parallel implementations image based representation of the spectral characteristics.
providing a promising speedup advantage. Figure 2 displays the parts of the data produced by such an

imaging sensor (SOC 700). In this case, the spectral
Index Terms-remote sensing, hyperspectral data, linear information corresponding to the wavelength intervals is

unmixing, linear algorithms, Nonnegative Matrix Factorization. colleted as image bands covering a relatively large area. Figure
2a shows the image of a ceramic plant pot placed on a large
rock formation and having as background a brick wall. The

I. INTRODUCTION plants arranged in the pot are both natural and artificial.
IN remote sensing, few areas have seen such an accelerated Extracting a vector of pixels from the formed image cube is
development as it is the case with hyperspectral and similar to producing the spectra for the material corresponding

multispectral imagery [1]. While spectral imaging has started to the pixel location. Figure 2c shows spectra extracted in this
as a basic evolution of the photogrammetry, the ability to way for fake and real (solid and dashed lines respectively) as
increase the sensed information through the finer and finer well as for the ceramic pot (diamond markers) and the rock
separation of the light spectrum in different recorded images formation (dotted line). Figure 2d shows a vertical slice
has resulted in tremendous advances in processing and through the data cube where the spectra can be seen as rows.
extension of applicability that allow us to consider spectral Hyperspectral imagers are characterized by spectral and
imaging as a distinct field in its own. spatial resolution. Spectral resolution refers to the width of the
Given any material, and using readily available lab spectral wavelength intervals associated to each of the bands

equipment, one can measure the intensity of the light reflected and the spatial resolution refers to the surface (in square
inches, feet, or miles) covered by each pixels. Both
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considerably coarser than the onie obtained in a lab
environment. Pixel values are neither 'pure' spatially since While it is possible to envision supervised feature extraction
thy most probably span over are;as cover by a group of where the bands are formed in order to increase separability of
materials, known materials, it is often the case that no prior infomration
To extract useful information from hyperspectral imagery, is available on the scene surveyed [6]. In this case (usually

one mu:st use methods that would reduce the spatial and called unsupervised), the algorithms focus on the increase of
spectral ambiguity and increase the relevance of the data. On the sepation between classes within ach eature. The
traditional approach for processing hyperspectral data is separation is measured using class information such as
feature extraction. Feature extraction is defined as the process distatnce between means, distance between probabilities, etc
of reducing the data to a lower dimension without significant [3]. Previous efforts have focused on Principal Component
information loss [5]. In our case, this is done by either Analysis (PCA) [7], Orthogonal Subspace Projection (OSP)infoi-mation loss [5]. In our ca~~~~~~~~~~sethi is dn y eihe
selecting certain bands of by using a transform that produces [8], Mi i Noise Fraction (MNF) [9] Independent
the features as combinations of bands. Component Analysis (ICA) [10], to name a few. Many of

them however require significant constraints on the nature Of
the extracted features (such as decofrelation or independence),
and my result in decreased relevance of the results.

.6i In a series of recently published papers we have investigated
how Nonnegative Matrix Factorization (NMF) can be

0.4 l employed for feature extraction [11, 12]. The studies showed
NMF can have a natural interpretation in hyperspectral
imagery and can be seen to closely match the linear mxing

0.2 / .. model uised in spectra unmixing. However, they have alsO
7.n \<. ~indicated that NMF is slow to converge. To counter this, in the

cTcwent paper we survey a new NMF algorithm based on
0.5 1.0 1.5 2.0 2.5 projected gradients. To increase the seeduop we also look at a

Fig. 1. Spectra for two different stages of vegetation growth measured over parallel implementation scenario. The paper is organized as
the 400-2500 nm spectral range. Healthy grass (solid) and dry grass (dashed) follows. In the second section we provide a brief overview of
are plotted. Note the significant differences for the left side of the graph NMF and its modeling for hypespectral imge processing.
corresponding to visible and near infrared ranges. Wavelengths provided in
micromn:eters (1gm = 1000n:m). Section III describes the new projected gradient algorithm and

discusses possible parallel implementations. Section IV
provides a survey of our experimental results. The paper ends
with Conclusions (section V) and References.

II. NONNEGATIVE MATRIx FACTORIZATION (NMF)
Given the obseived data x, the goal of NMF is to find s and

a linear mixing transform W both positively defined such that
[13]:

x=Ws (1)

a) h)
This approach can be understood as factorizing a data

matrix subject to positive constraints. Soluitions to NMF are
based on constraining positivity and the grdient optimization
(mi.nimizing the distance between x and iterations of Ws). The
optimization is done by repeatedly updating W and s using
[13]

w w ff(W,s) (2)* o~~~~~~~~~~~~~~~~s
) d) where:

f(W,s)= lx-Ws12 (4)
Fi:g. 2. Skpectral ha:nds provided hya hyperspectral imager =offespondingj toF
portion:s of the green:, hlue and red: lights. (a:) Thle imnages colleted hy the 11
sensor are jrouped inl (b) hyperspe tral data cuhes. (c) The spectral can now ad1 I elntsteFoelu o ulda)nr]A
he collected as a vector through the cuhe. (d) A slice through the cuhfe eatch step wFe also ensure; that WY and S aret positive and1 S is
showing the various spectraS Data: colle<cted using a SOC2 700 imaginlg system nomlized.
and recorded overr the 400) nm - 900) nm wavelength interv7al in 120 hands.
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An algorithm including the positivity restrictions is To counter this, we investigated a new direction, recently
presented in [13] and was used to separate a limited number of introduced in the literature and based directly on the gradient
hyperspectral spectra in [14]. In this case, the equations 2 and steps.
3 are substituted by:

(WTX)i) III. ADAPTIVE PROJECTED NONNEGATIVE MATRIX
s = ( (5) FACTORIZATION (APNMF)

ij ii (WTWS)ii
+,F Given the original update steps (2) and (3), there is no

(xsT)ij (6) warrantee that the resulting values will not include negative
W W components. To counter this, we modify these steps to enforce

(Wssflj+e positivity:
respectively. ( a (W_)

In [11] we present a similar approach. Compared with NMF W= P w- (10)
algorithms described in the literature our change was to OW
enforce the restrictions on s such that they will satisfy the =P af(W,s) (11)
linear mixing model (LMM). In LMM, each observed spectra as )
x can be expressed as [11]: where:

m

x=ais; +w=Sa+w (7) P(X)=1x x20 (12)
i=1 0 X<O

where S is an nxm matrix of spectra (sl, .., Sm) of the individual In other words, the update will occur only when the
composing materials (also called eudmembers), a is an m- i.o
dimensional vector describing the fractional abundances of the poiivt isesrd nti ae i spsilobidandimembrsiinavecthrdescmixtue(bundtheranceeio abunandes the NMF algorithm that tries to compute the best update step forendmembers in the mixture (azbundan>ce vector) and w iS the eahirton
additive noise vector. The elements of the abundance vector each iteration... .. ~~~~~~~~Thealgorithm iS described in Figure 3 and constitutes a
are assumed to be positive and with unit sum:. ..

a>>iiv an w ui simplified version of the one presented in [15]. There are
ai _ O,l = ln ) m (8) several significant differences compared to the original NMF
v -1 (9) algorithms. First, we note that in the steps 7 and 10, W and s
Za1 (9) respectively are constants. This means that we can compute the

vriou derivative on s (and on W respectively) without worrying

Idendmember vandousiatherirabu indaces Thiae meandme rinee about the other component of the NMF problem. Second, theendmembers and thelr abundances. The endmembersper direct use of the gradient formula allows for the introduction

image analysis [11]. Feature extraction can be seen as of an adaptive factor ct that that will lead to an update on s,
performing unmixing. The abundance determination is done at and W with higher precision than the regular gradientterfsamegtimewingThenmbu nersele mtion.Inthis se, ath approach. Because of this, the algorithm is also often
endmembers and abundances are assumed deterministic and described as alternative projection optimization [15]. Previous
unknown and a maximum likelihood estimation approach is studies indicate that using alternative projection steps still
employed to determine them. allows for a determination of the optimum value [16,17].
Most of the feature extraction techniques cannot be directly Finally, the algorithm now has a clear stop condition (see step

applied for endmember extraction since they do not verify the 12). We will stop when the change between two consecutive
equations 7 and 8. In addition, techniques such as PCA and iterations has not produced a significant improvement
ICA further restrict the endmembers to be orthogonal or (expressed as a fraction s from the previous value of the
independent. In this view, NMF is less restrictive and does not function f described in equation 3). In our experiments, s had
require any significant modification for applying it for the value 0.001 - i.e. one thousandth.
unmixing. Of particular interest is the choice for ct in the steps 6 and 9.
A quick analysis of the update steps in (4) and (5) reveals Since in both cases we can come up with similar strategies, we

that while they ensure that the matrices remain positively will focus on only step 6. Given a generic current solution W
defined, they also require significant computation times. If we and s, the goal is to find ct such that:
assume that W is n x m, x is n x p, and s is m x p, computing (( ( -af(WksI) (13)
the equation 4 requires O(nmp) operations, while the equation a = arg miny yWPysk -aaJJ)
5 requires O(nmp+p2m). Assuming large values for p since it Ski))
relates to the number of pixels in the image and the fact that In other words, we must find the update parameter that
the iterative algorithms will require several iterations, NMF optimally minimizes the distance (based on s) to the solution.
seems to be a computationally intensive method. [15] and [16] discuss an iterative process that can produce an
One possible problem is that the update step does not approximation of such ct. In this case, we start with a fixed

involve any fine tuning. When the new values for x and W are value (say 0.001) and we increase it or decrease it until the
computed, no control is provided to ensure that the update optimal value is reached. An efficient way of the update is
ledto th opiu.auso eae nfcoesotn' given in Figure 4. In short, if the update provided by the

current xt is too small (the test in step 4) we will increase alpha
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by ten (i.e. divide by f3=0. 1). We will continue increasing as has been shown to ensure that a sufficient decrease will occur
long as the update is still small (step 5) and will stop at the and that an optimum solution will be reached [15].
largest value that ensured that the update is not overshooting. To obtain the update step for W we note that we can apply
In the case that the update is already overshooting in step 4, we the same algorithm as Figure 4 since:
will start a decrease process for cx by repeatedly dividing it by x = WS > XT = (Ws)T = xT = sTWT (15)
10 (i.e. multiply with f3=0. 1) and stop once we find a value
that does not overshoot the optimal solution. In all our Finally, we note that the condition 14 is not well formed
experiments we followed the suggestion that c5 = 0.01. from the point of view of vector arithmetic. An alternative
We note that we have extensively used the term of condition is provided in [Ref]:

overshooting. In our understanding, overshooting means that
the update value for s will not provide a sufficient decrease of af(W s) - \ 1
the optimization function. The condition: a ) +s -s,W s

f(W,s)-f(W,s).a f,s) (s-s) (14) af (W,s) = WTWS_WTx (17)
as

1. Randomly initialize W and s to positive values The developed algorithm has a complexity higher than the
2. Scale the columns of s to sum up to one regular NMF one. At each iteration, to compute the formula in
3. Wo = W and so=s equation 17 we would need 0(m2n2p). Then, to compute the
4. Compute d0=f(Wo9ss) .
5. Repeat for k=O,1s new s we need O(mp) followed by the check for condition 16.

5. Repeat for k=0,1 This is done in O(m2n2p). Overall, to compute the new updated6. Find optimum cWfor 7. s the algorithm in Figure 4 needs O(km2n2p) where k is the

Sk+ = P (Ska kS) number of rounds the steps 5 or 7 are needed to be run.
y)k To speedup the processing, we suggest a parallelization of

8. Scale the columns of s to sum up to one the algorithm in Figure 4. Figure 5 shows such parallelization
9. Find optimum ct for 10. based on a generic number of t threads. The algorithm starts by
10. Wk=P Wk_a af (WkISk+) deciding which direction the search for cx should be taken.

k+lyt k awa ) From this, we will compute in parallel several new possible
11. Compute dk+1=f(Wk+lsk+1) update steps and chose the best one.

1. Start with currentW and s
12. while (dk- dk+1)<edk 2. Start with oc=0.001, C =0.1, and a=0.01, and t parallel

processes.
Fig3.AdaptveProjectedNonnegative Matrix Factorization algorithm 3. Compute - Ps-a f('W,s)
Fig3 AdativeProjcted (APNMF) Ks I

4. If )f(W, s) -

1. Start with currentW and s f (W,-s)- f (W,s) <. as (s -s)l
2. Start with c=0.001, f3 = 0.1, and ¢=0.01 do step 5

3. Compute E')l lse do step 6
4. If f(af(s f~3(WI,s (-s

ff(Ws-) - f(W,s) < ) (s - s) 5. Compute in parallel for cl1=cx/ , ,c1=od fV
dosteps S and6 l (Wk=P(Is-f( ,s)

Else Vk as
do step7 |5. 1. Find largest kstfs(w,St-.(WIS)<af(W S)(sk)-s)as

5. while af(W, s) - 5.2. If k is equal t, repeat 5 with oc=ocl(ss) If k not found, use the original ct
5.1. x=cx /f3 Otherwise o-t°Ck and stop
5.2. -pP aaf(WS))

5.2.>jf(WS) 6. Compute in parallel for (c1=cx* f3,.,c = fV
6. OxZOx * 0 f(WI,s)
7. while f(W,s)-f(W )a f(WI 6.1. Find smallestk s.t af( s)

6.1. oc=xW* f(W,(W)-f(W,).o (sk-s)
6.2.s P0_____,S) 6.2. If k not found, repeat 6 with oc=ocl
I As I I;k Otherwise OLx=ok and stopI

Fig 4. Computation of the optimum update value for APMNF.
Fig 5. Parallel computation of the optimum update value for APMNF.
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on average to yield the new a, it is clear that increasing the
The PAPNMF (Parallel Adaptive Projected Nonnegative parallelization beyond four will not help.

Matrix Factorization) algorithm that results has the advantage B. SocData
of providing a faster iterative step, closer to O((kI)m2n2p). It is
interesting to note that if otis very close to the original starting h e nsocrtlab

vallle, :theparalY p vid 0ly hetter hypalspctra sensr cuffently availalble in ou labThb amrvalue, the parallel version may not provide significantly better is able to produce 640x640 pixel imuages on 120 bands equally
resuilts. spaced within the 400nm and 900nm (i.e. visible to near-

infrared range). Forty bands uniformly extracted from the
IV. EXPERIMENTAL RESULTS image cube were used for the experiment.

The sequential and parallel APNMF algonrthms were
iinplemented in Matlab 7.3 and irun a on a Dell Latitude system dlk o p u (nylon)
with Itntel Pentiium 4 at 2.4GHz processor and 512MB of dalivparachute nl6n)
RAM. In order to avoid reletion, we refe the reader to our light oliveparachutinylon)
previous work in [11] for an explanation on the relvance of
NMF for feature extraction. In this paper, we have focused the nomex kevlar (wood1and)
practical experiments on the comparative analysis of accuracy
between reeular NMF and APNMF as well as performed a green eting
preliminary investigation on the speedup provided by the cotton (green woodltand)
PAPNMF.

nylon (green woodlan d)
A. HYDICE Data
The hyperspectral image set (see Figure 6) was provided cotton (green)

from the Hyperspectral Digital Imagery Collection Experiiment
(HYDICE) by the Spectral Information Technology denert BDU (nylon)
Application Center (SITAC). It corresponds to a foliage scene
taken from with a spatial resolution of 1.5m at wavelengths F .
between 400nm and 2.5 micron part of the Forrest Radiance Ig6
set. Various panels are present in the scene organized on eight 3 x 10
rows and of difrent sizes (3m x 3m, 2m x 2m and Im x Im I I I
from left to right respectively). 2.5 NNMF
A subset of 85 bands uniformy extracted from the data was APNMF

used as input to the NMF algorithm. Starting with 10 different 2
initializations for W and s we have run NMF, APNMF, and
PAPNMF (varying the number of parallel processes from 2 to L5
8). Figure 8 shows the progression of accuracy (based of the
function f described in equation 4) vs the nwnber of rounds. 1
We note that while both NMF and APNMF have stopped
within 20 rounds fore = 0.01, neither have stopped after 200 -0- .-___ _ L

rounds for e = 0.01. For claritv, we have plotted only the first __ - _
25 rounds, with the mention that, after 200 rounds APNMF 0 5 10 15 20 25
has reached a value approximately half than the one reaced by Fig S Accuracy graph for MNF and APNMF applied to the Hydice data for
NMF at the same number of rounds. We conjecture that the first 25 iterations.
APNMF. through its fine tuning algorithm is able to match
closer the optimal solution than the original multiplicative
NMF method. 25 --

We did niot expect the PAPNMF to provide any changes in
the acctuacy progresswhen compared withAPNMF. Indeed, a 2L - -

review of the algorithm presented in Figure 5 convinces the
reader that at each step PAPNMF will produce the same
update coefficient as APNMF. A cursory look at the resulted *
experimental data verified out theoretical conclusion1
When looking at the average number of iterations needed for

t:he APNMIF to provide th;e next a comnpared to PAPNMF we = * * * *
notice a r>emarkable redu ltion (see Fi6ure 9). While the 00- i -
sequentialg soluitio reurs on average three iterations,thfe X

nubr decreses toedmposed ton oneyoncefolurSormoe parallel 1 Parallel Proresnen
processesareemploed. Sinceonly thre values aechecked Fig: 9. AveragLe nurnher of iteration:zs for eacrh roun:zd versus the nmher}f of

parallel processes used in the case of the Hydice data:.
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Figure 10 shows the selected image. The set-up is fonned of
an artificial plant arrtged in a light brown ceramic pot.
Several real leaves (shown in enhanced green in the picture)
were placed between the artificial leaves (left side, top and
lower right side of the green area). To benefit from full
spectrum illumination, the arrangement was placed outside on
a large rock form-ation. The background is fomnnd of a brilc
wall.
We have followed experimental scheme similar to the one

for Hydice (10 runs, each including NMF, APNMF and
PAPNMF with the, nuber of parallel processes ranging from Fig 10. SOC 700 image used in the experments
2 to 8). Figure 11 shows the average progression of accuracy
(based of the function f described in equation 4) vs the number

3 x15
of rounds. For clarityv we have plotted only the first 25 rounds, M|iNF
with the mention that, again, after 200 rounids APNMF has 2.5 APNNIF
reached a value significantly lower than the one reached by
NMF at the same number of rounds. 2
When looking at the average number of iterations needed for

the APNMF to provide the next a compared to PAPNMF we 1 I I 5
notice a remarkable reduction (see Figure 12). While the
sequential solution requires on average three iterations, the 1
number decreases to close to one once four or more parallel
processes are employed. Since only tlree values are checked o0.5 --------
on average to yIed the new a, it is clear again that increasing I
the parallelization beyond four will not help. While notcot : 25 10 15 20 25
plotted, we also note that our empirical observations lead us to iterations
believe that the number of iterations for s has been Fig 11. Accuracy graph for MNF and APNMF for the SOC data for the first
significantly lower (usually 1 increase from 0.0001) compared 25 iterations.
to the number of iteraions for W (usually 4-6 decreases from
0.0001). While we noted consistent behavior among the two 3
data sets, the only viable explanation would be that s is a
significantly larger data compared to W and this, in turn will 3-

minimize any differences when computing the formula 16. . 2.5
22..

V. CONC-LUSION -1*-
We have investigated a new approach to solving the I = -- ==

Nonnegative Matrix Factorization problem when employed for
feature extraction in hyperspectral imagery. While previiusl -* * --* * **
work has suggested NMF as a viable tool in providing 0 i 2 3 4 5 6 7 8
improved data representation (a key component of feature parallelprocesses
extraction), questions remain related to the converence of th lFig 12. Average number of iterations for each round versus the number ofexrcin qetin rmai relate to:te covergenc of the parallelDprocesses used in the case o te,SOC data.
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