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ABSTRACT 

We present a new algorithm for feature extraction in hyperspectral images based on source separation and parallel 
computing. In source separation, given a linear mixture of sources, the goal is to recover the components by producing 
an unmixing matrix. In hyperspectral imagery, the mixing transform and the separated components can be associated 
with endmembers and their abundances. Source separation based methods have been employed for target detection and 
classification of hyperspectral images. However, these methods usually involve restrictive conditions on the nature of the 
results such as orthogonality (in Principal Component Analysis – PCA and Orthogonal Subspace Projection - OSP) of 
the endmembers or statistical independence (in Independent Component Analysis - ICA) of the abundances nor do they 
fully satisfy all the conditions included in the Linear Mixing Model. Compared to this, our approach is based on the 
Nonnegative Matrix Factorization (NMF), a less constraining unmixing method. NMF has the advantage of producing 
positively defined data, and, with several modifications that we introduce also ensures addition to one. The endmember 
vectors and the abundances are obtained through a gradient based optimization approach. 
 
The algorithm is further modified to run in a parallel environment. The parallel NMF (P-NMF) significantly reduces the 
time complexity and is shown to also easily port to a distributed environment. Experiments with in-house and Hydice 
data suggest that NMF outperforms ICA, PCA and OSP for unsupervised endmember extraction. Coupled with its 
parallel implementation, the new method provides an efficient way for unsupervised unmixing further supporting our 
efforts in the development of a real time hyperspectral sensing environment with applications to industry and life 
sciences. 
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1. INTRODUCTION 
Hyperspectral data are formed as collections of tens or hundreds of images of the same scene with each image 
corresponding to a narrow interval of energy wavelength [1]. Such images usually cover the visible to infrared ranges 
[2], although hyperspectral data for other spectrum parts such as Terahertz were also produced [3]. The richness of this 
information information becomes clear when we realize that any two materials expose differences in reflectance in one 
or more of the collected bands [4]. Plotting the reflectance values we obtain detailed graphs (often called spectra or pixel 
vectors) that characterize the materials. Figs. 1 and 2 are examples of the use of hyperspectral technology in analyzing 
objects. A plant arrangement that includes both artificial and natural vegetation is placed in a ceramic container on a 
rock formation outside a campus building in natural sunlight. A hyperspectral camera able to collect 120 images within 
the 400 to 900 nanometers (visible to near infrared range) is used to collect the data. A color display is obtained (Fig 1c) 
by associating with the fundamental colors grayscale intensity images collected within the blue, red and green 
wavelength intervals. In addition, plotting vectors of the reflectance values for a specific location, we get the spectra for 
the material present at that location. In Fig. 2 we have three such spectra obtained for different materials present in the 
scene with the exact location of the data collection being given by the white arrows in Fig.1c: ceramic pot (Fig.2a - 
lower arrow), artificial plant (Fig.2b – top right arrow) and natural vegetation (Fig.2c – top left arrow). Note that while 
the artificial and natural vegetation are difficult to distinguish in the color image, their spectra are significantly different. 
The natural vegetation displays a graph with two peaks associated to the green and near infrared wavelengths while the 
artificial vegetation has only one peak in the green range. We also note the significantly different shape of the ceramic 
pot, emphasizing its red appearance. 
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(a)     (b)    (c) 

Fig. 1. a) Model for a hyperspectral data set as a stack of grayscale images b) Example of grayscale images from a 
hyperspectral data set corresponding to blue, green and red visible intervals (wavelengths centered at 495nm, 556nm, 
and 639 nm respectively) c) Color image formed by combining the three grayscale images in b according to their color 
of origin.  

 
(a)     (b)    (c) 

Fig. 2. Spectra of various materials a) ceramic container, b) artificial plant, c) real plant. The vertical lines correspond to 
bands in the blue, green and red areas (wavelengths centered at 495nm, 556nm, and 639 nm respectively) shown in Fig. 
2b. The locations of the spectra collection are shown in white arrows on Fig. 1c. 

While this example is illustrative of the richness of hyperspectral data, in reality, several other factors impede on the 
direct usage for object detection and identification. First, although spectral information is distinct among different 
materials, studies have shown that the variability within a single material is also often quite large [5]. For, example, 
every vegetation type displays considerable spectral variability both at different growth and humidity stages as well as 
within the same plants. Air density and humidity, light intensity and angle of incidence, as well as shadows, prevent the 
collection of correct spectra and lead to inaccurate results. In addition, the relatively coarse spatial resolution of the data 
(not a significant factor in Fig 1) for aerial and satellite images means that often a collected spectra is the combined 
result of several materials found in the area covered by the corresponding pixel [6]. As such, the spectral information is 
generally thought to be a mixture of basic spectra. Correctly modeling this mixture, as either linear or nonlinear, and 
then accurately providing an unmixing solution is still an open problem [2]. 

A second important aspect of hyperspectral data relates to the size and its redundancy [4]. Unlike regular imaging, in 
hyperspectral imagery we often work with hundreds of bands that combined reach sizes of tens of Megabytes. While 
computer technology continues to advance, supporting the speedup in processing, algorithmic techniques that efficiently 
use the computing environment are often needed to provide up-to-date and relevant results. Current efforts are mainly 
focused on data reduction (feature extraction [7]), and distributed and parallel processing [8]. 

Our approach contributes to a solution for both correct spectra identification and fast processing. The choice for 
unmixing algorithm, Nonnegative Matrix Factorization (NMF), is significantly more flexible that other approaches, such 
as Principal Component Analysis (PCA) [9], Independent Component Analysis (ICA) ([10, 11]) or Orthogonal Subspace 



 

 

Projection (OSP) [12] by requiring relatively few restrictions on the original data or results. Previous studies support this 
view and suggested it as a viable unmixing method [13].  

Unfortunately, as with many other approaches, NMFs processing time is strongly dependent to its iterative nature and 
has an update step with high computing complexity. A single run requires several tens of iterations to converge and can 
require hours to compute on common desktop architectures. Our approach is to use parallel processing, as provided by 
multiprocessor systems, now more readily available even as regular desktop. The parallel computation of the update step 
provides a significant speedup to the method. 

The paper is organized as follows. In section 2 we provide a brief review of the spectral unmixing problem, focusing on 
the linear mixture model. In section 3 we present the general NMF problem and its application to unmixing. Section 4 
introduces the parallel NMF algorithm we developed. Section 5 describes the experimental results obtained on 
hyperspectral data. The paper ends with Conclusions, Acknowledgement and References. 

 

2. SPECTRAL UNMIXING 
2.1 General Unmixing Problem 

Due to the spatial resolution of hyperspectral images, a pixel usually covers an area occupied by more than one material. 
While this may be obvious when thinking of border or edge areas in the scene, the same thing applies even in 
homogenous area. A pixel from a vegetation scene, while covered mostly by the plants is often a combination of leaves, 
stems and exposed ground, to which we add the influence of shadow and light incidence angle [6]. Studying how all 
these factors contribute to forming a single reflectance value that is recorded by the hyperspectral camera as a pixel is a 
critical area of remote sensing research. The general unmixing problem assumes that a scene surveyed through a 
hyperspectral data is in fact formed as a mixture of a limited number of materials. Such materials are often called 
endmembers. In the unmixing problem we try to recover these endmembers and find how they contribute to each of the 
pixels in the image. 

Previous efforts have suggested that the best model for such mixing is nonlinear [6]. Given the models for scattering of 
light, the random interleaving of materials, the repeated reflection of light (or energy) from one material to another, 
overall reflectance value obtained can be seen as a nonlinear combination of individual material reflectance together 
with additional components that account for angle of incidence, light energy, etc [6]. This approach, while theoretically 
sound, is unlikely to provide accurate solutions for correct endember identification due to its complexity. Instead, a 
simplified linear model was proposed. 

2.2 Linear Mixing Model (LMM) 

LMM is described as follow. Any n-dimensional observed spectra x from the image can be described as a linear 
combination of the same m n-dimensional spectra (endmembers) s1, ..sm, and noise [14]: 
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where a is an m-dimensional vector describing the fractional abundances of the endmembers in the mixture (abundance 
vector). The values of a must be positive and add up to 1: 
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If the materials are physically placed adjacent to each other and the scattering of light radiation is dominated at any point 
by a single material, then the observed values can be assumed to follow LMM [6]. However, if the materials in a pixel 
are grouped more closely (like mixture of various sand grain types, mineral mixtures – see the rock in the lower part of 
Fig. 1c, etc.) the light interacts with more than one material and the reflected value is closer to a nonlinear combination 
of the reflectance of the individual composing materials. In this case LMM will not work properly. 



 

 

LMM can be solved through a two stage method performing identification of the endmembers followed by the 
computation of their abundances. When the endmembers are determined, inversion algorithms restricted by the Eqns 2 
and  3 are used to obtain the abundance vectors. applied to compute the abundances. The endmembers can be identified 
based on general knowledge of the scene (and picked from laboratory spectral libraries) or extracted directly from the 
image by human observers or through selection algorithms (selection of the centroids as endmembers, orthogonal 
subspace projection with the projection vectors considered to be endmembers, or geometric determination with 
endmembers considered to be at the extremities of the spectra) [6]. An alternative approach is to compute the 
endmembers and abundances simultaneously.  In this case, the endmembers and abundances are assumed deterministic 
and unknown and a maximum likelihood estimation approach is employed to determine them [15]. Simultaneous 
determination of both endmembers and abundances is more efficient than the two stage process, especially when no 
prior information on the image is available. Suggested approaches have included decorellation of the data through PCA 
or OSP, or the more general separation of independent features through ICA [2]. Recently, NMF was suggested as a 
better approach [13].  

3. NONNEGATIVE MATRIX FACTORIZATION (NMF) 
3.1 Sequential NMF 

Given the observed m x n – dimensional data x, the goal of NMF is to find k x n dimensional s and a linear m x p mixing 
transform W both positively defined such that [16]: 

=x Ws        (4) 

In other words, the goal is to factorize the data matrix such that the new data matrix and the transform are positive. From 
this remark we reach a possible solution to NMF by minimizing any non-increasing function f(W,s) that takes the value 
zero only when Eqn.4 is satisfied and : 

    0, 0≥ ≥W s        (5) 

Given such a function, a gradient descent approach can be envisioned with W and s randomly initialized and then 
updated by: 
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An elegant solution that ensures positivity is presented in [16]. The update steps are: 
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And the optimization function is the Frobenius (or Euclidean) norm: 
2( )
F

f =W,s x - Ws       (10) 

At each step we also ensure that W and s are positive and s is normalized. The full algorithm is presented in Fig. 3. 
 



 

 

 
Fig. 3. Nonnegative Matrix Factorization Algorithm  

We note that steps 4-6 will be repeated until a convergence criterion is satisfied. In our case, the convergence was based 
on a stability measure for f( . , . ) (the algorithm stops when f stabilizes). In our experiments, addition of simulated 
annealing that increased or decreased the update factor did not affect the convergence speed. Steps 4 and 5 are applied to 
each component of s and W respectively. The value of ε is relatively small and is mainly used to limit the effect of the 
local optima. We also note that compared with the original algorithm, the s data are scaled to add up to 1 columnwise. 

3.2 NMF as solution to linear spectral unmixing 

When solving LMM and trying to determine the endmembers and their abundances at the same time, the relationship 
among the endmembers becomes a major problem. In PCA and ICA, the endmembers correspond to rows in the linear 
transform and are orthogonal. This may be a condition too strict for endmember extraction where the base materials may 
be only slightly different from each other [1]. Additionally, a bigger hurdle comes when we analyze the abundance 
images. Traditional methods do not verify Eqns 2. and 3. Instead, least square approximations are computed after the 
endmembers are produced [14]. Compared to this, NMF can be seen as a natural solution to LMM. The resulting 
endmembers are not restricted by orthogonality and the abundance vectors are already positive. Our addition for the 
abundances to add up to one ensures that both LMM conditions are satisfied. 

The above observation explains why NMF has become a popular research direction in linear unmixing. The algorithm in 
Fig. 3 while originally presented for general unmixing in [16] was also implemented for hyperspectral data unmixing 
[13]. Nevertheless, the tests were mainly done on a limited number of spectra and NMF was not applied on a full 
hyperspectral data set. In a previous paper [17], we investigated the appropriateness of the algorithm for full data and 
concluded that the results suggest results suggest that NMF reaches optimal solutions that clearly separate endmember 
information for the data. Since the two matrices were initialized to positive values and since the update step maintains 
the positivity, Eqn. 2 will hold for the results and Eqn. 3 is validated by step 6 in the algorithm. We also note that the 
current version of the algorithm needs to have the number of features predetermined apriori. In our case, we considered 
the number of features to be equal to the number of original spectral bands. 

A major problem, however, was the computational complexity of the algorithm. Since NMF converged after 
approximately 100 iterations, the time required to perform the unmixing was quite large. The next section provides an 
algorithm that significantly reduces the execution time. 

4. PARALLEL NONNEGATIVE MATRIX FACTORIZATION (P-NMF) 
Parallel processing is often used as means to speed up compute intensive algorithms. In the case of NMF, the repetitive 
nature of the method, as well the ability to distribute the data in relatively distinct subsets supports our design for a 
parallel NMF. P-NMF is presented in Fig. 4. After the data are read, a sequential application creates and starts a number 
of parallel worker threads (Thread1, Thread2, …). In a programming application threads constitute separate ‘threads of 
execution’ that share data and code, the advantage being that they can be scheduled independently (parallel or not) for 
execution. After each thread updates the assigned portions, the master process can test for convergence. The grey-shaded 
areas in the figure correspond to sequential (or common) portions of the algorithm while the non-shaded area 
corresponds to parallel portions. 

1. Randomly initialize W and s to positive values 
2. Scale the columns of s to sum up to one 
3. Repeat: 
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Fig. 4. Diagram of the distributed algorithm  

Each of the threads will work on a separate part of W and s. Fig. 5 and Fig. 6 show how W and s are distributed among 
the threads. In the case of s, each thread will receive a relatively equal number of rows (or bands) and in case of W each 
thread will update a relatively equal number of columns (endmembers). The formula for assigning the data is as follows: 

[ * ...( 1)* ,...] [...., * ...( 1)* ]
:i p p p pi i i i

k k k k

Thread Update
+ +

= =i is s W W    (11) 

The original NMF algorithm was further modified for increased speedup by pre-computing WTW and ssT (that were 
used in steps 4 and 5 in the sequential algorithm described in Fig. 3). The resulting k x k matrices were computed in 
parts by the threads in a manner similar to W (see Fig. 6 and Eqn. 11). Two synchronized points were introduced to 
ensure that all the threads have access to the same data. 
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Fig. 5. Distribution of the s data for updating by threads. Each thread processes several of rows (i.e., an equal number of 

abundance bands). 

 
Fig. 6. Distribution of W, WTW and ssT for updating by threads. Each thread processes several columns.  

The complexity of the algorithm depends on the size of x (m x n), W (m x p), s (p x n) and the number of threads k. In 
the case of the computation of the common data (section (i) in Fig. 6), the complexity is: 

21( * * * ) ( )pO p m n O p mn
k k

=      (12) 

The complexity for the second parallel section ((ii) in Fig. 6) can be computed in a similar manner as: 
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We note that the above formulas suggest that the parallel speedup is proportional with the number of threads. This is 
possible because the two sequential steps are computationally inexpensive (when compared with the parallel steps). 

When redesigning an algorithm it is often necessary to ensure that the results will remain the same. In our case, we note 
that the modifications are semantically equivalent to steps in the original algorithm and do not modify its outcome. A 
semantic proof of this fact, while possible, was not among the goals of this paper. This equivalence is however employed 
when presenting the results. 

5. EXPERIMENTAL RESULTS 
We implemented P-MNF using Java [18]. A single application with multiple threads was designed, allowing for the use 
of synchronized method feature as an elegant way to ensure the synchronization of the parallel parts. After compilation, 
the code was run on a SunFire v880 machine. The system has 4 UltraSparc9 processors running at 750Mhz and 8GB of 
RAM running Solaris.  

Two data sets, were used for the experiments and their images are shown in Fig. 7. First, we processed a hyperspectral 
image from the Hyperspectral Digital Imagery Collection Experiment (HYDICE) (Fig. 7a) [19]. It corresponds to a 
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foliage scene taken from with a spatial resolution of 1.5m at wavelengths between 400nm and 2.5 micron. The data set 
uses sub-scenes provided by the Spectral Information Technology Application Center and has 85x185 pixels and 40 
bands. 

The second data set (Fig. 7b) was produced using a SOC 700 hyperspectral sensor currently available in our lab. The 
image was a 160x160 pixel image 120 bands equally spaced within the 400nm and 900nm (i.e. visible to near-infrared 
range). Forty bands uniformly extracted from the image cube were used for the experiment. The set-up is formed of an 
artificial plant arranged in a light brown ceramic pot. Several real leaves (shown in enhanced green in the picture) were 
placed between the artificial leaves (left side, top and lower right side of the green area). To benefit from full spectrum 
illumination, the arrangement was placed outside on a large rock formation. The background is formed of a brick wall. 

We note that the same images were used in [17] and shown to produce promising results in endmember extraction. For 
brevity, we will focus the discussion of the results on the speedup obtained through parallel processing, referring the 
reader to [17] for a discussion on the accuracy of sequential NMF.  

For each of the data sets, we executed five different P-NMF runs with 25 iterations each and the number of threads 
varying from 1 (sequential) to 8 for a total of 40 P-NMF runs. Fig. 8 displays the maximum variability for each of the 
data sets. For each situation (number of threads ranging from 1 to 8) we computed the maximum and minimum iteration 
execution time. The graph displays the differences between the maximum and minimum as percentages of the average 
execution time. We note that the variation is reasonably small, the maximum values reaching 14% for the Hydice data. 
Fig. 9 presents the average execution time for the two data sets (solid lines). For comparison, we also plotted a dotted 
line representing the ideal execution times as estimated from the complexity analysis done in the previous section. We 
note that our prediction is met by the experimental results up to four threads followed by a stability or increase of 
execution time starting with the case of five threads. The slight difference in execution times is explained by the 
overhead introduced by synchronization as well as by multiple accesses to the same memory area (for computing the 
matrix operations by the threads). The significant performance decrease however, noticed starting with five threads is 
due to the fact that our system was using up to four processors. Had the system been equipped with more CPU’s, the 
performance improvement would have been continued. We also note an unusual performance increase for eight threads 
in the case of the SOC 700 data. To better understand this behavior, further test runs are planned. Current investigation 
of the code or the experimental data did not reveal anything relevant to explain it. 

Finally, Fig. 10 displays the average speedup. For this, we divided the sequential execution time by the execution time 
for each thread number case. This allows us to compare both data set runs with the same measure and investigate the 
consistency of the results. For illustrative purposes, the ideal speedup (computed as the number of threads) is also 
presented. The graph confirms our preliminary analysis in suggesting the P-MNF outperforms sequential MNF 
consistently up to the number of processors. 

6. CONCLUSIONS 
We introduced a parallel spectral unmixing algorithm for hyperspectral images. P-NMF originates from the classical 
Nonnegative Matrix Factorization solution modified to ensure additivity to one of the abundances. While previous work 
suggested NMF as a viable tool for unmixing, it was also clear that the time complexity of the method will strongly 
affect the overall usability. P-MNF is the parallel NMF algorithm, further improved by modification of the order the data 
is computed. Overall, the P-NMF algorithm performed robustly and significantly increased the time performance of the 
endmember extraction.  Of particular interest is the fact that the newly introduced method is semantically equivalent to 
its sequential counterpart. 

While the algorithm was designed mainly for hyperspectral data, is can be applied to any situation where NMF is 
employed. Its elegance and simplicity allow for speedups directly proportional to the number of processors available in 
the parallel machine. The implementation in a high level language (Java) ensures ease of portability and further 
development. In addition, further changes in the sequential NMF algorithm can be easily ported in the parallel 
counterpart. 

 



 

 

    
(a)      (b) 

Fig. 7. Experimental Data a) Hydice data set with panels of various materials. B) SOC 700 data set with real and artificial 
vegetation. 
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Fig. 8. Variability among the P-MNF runs. Maximum difference in execution time for an iteration as percentage of the 

average execution time. 
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Fig. 9. Execution time of each P-MNF iteration for multithreaded run. a) Hydice data, b) SOC 700 data  
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Fig. 10. Comparative P-MNF speedup obtained for the two data sets and the ideal speedup.  

Given an increased use of cluster and distributed computing, it is of interest to see how easily would P-NMF be ported to 
become ‘D-NMF’ and how would the performance be affected. Recent developments in Java grid technology that allow 
portability of threads from one system to another [Ref] suggests that P-NMF may be in fact already able to run as a 
distributed application. Barring this possibility, a distributed version will have to take in consideration the overhead 
introduced by communicating data among the system, factor significantly reduced in a parallel system  Nevertheless, this 
may be countered by improved computational performance available through individual systems as well as increased 
cost effectiveness. 
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